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We study self-dual coradically graded pointed Hopf algebras with a help of the dual Gabriel
theorem for pointed Hopf algebras (van Oystaeyen and Zhang, 2004). The co-Gabriel
Quivers of such Hopf algebras are said to be self-dual. An explicit classification of
self-dual Hopf quivers is obtained. We also prove that finite dimensional pointed Hopf
algebras with self-dual graded versions are generated by group-like and skew-primitive
elements as associative algebras. This partially justifies a conjecture of Andruskiewitsch
and Schneider (2000) and may help to classify finite dimensional self-dual coradically
graded pointed Hopf algebras.
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1. INTRODUCTION

One can start with quivers to construct path algebras and their quotient
algebras. This produces finite dimensional elementary algebras in an exhaust way,
due to a well-known theorem of Gabriel. See Auslander et al. (1995) and Ringel
(1984). There is a dual analog for coalgebras given by Chin and Montgomery (1997),
which is remarkable for removing the restriction of finite dimensionality. Namely,
any pointed coalgebra is a large subcoalgebra of the path coalgebra of some unique
quiver.

A graded coalgebra C = ⊕
n≥0 C

n is said to be coradically graded, provided
that Cn =

⊕
i≤n C

i� where �Cn� is the coradical filtration of C (see Chin and Musson,
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1996). Throughout this article, by a graded Hopf algebra H we mean that a Hopf
algebra H = ⊕

n≥0 H
n is a positively graded algebra, such that the comultiplication,

the counit, and the antipode of H preserve the grading. Such an H is said to be
locally finite dimensional, provided that all homogeneous spaces Hn’s are finite
dimensional. A locally finite dimensional graded Hopf algebra H = ⊕

n≥0 H
n is said

to be self-dual, provided that there is a graded Hopf algebra isomorphism H � Hgr,
where Hgr = ⊕

n≥0 H
n∗ is the graded dual of H� The self-duality is very natural: for

any locally finite dimensional graded Hopf algebra H , the tensor product H ⊗Hgr

is self-dual. We remark that self-dual Hopf algebras generated in degrees zero and 1
were studied by Green and Marcos (2000), where descriptions of such Hopf algebras
via the so-called self-dual Hopf bimodules were obtained.

A quiver Q is said to be a self-dual Hopf quiver, provided that Q is the
(co-Gabriel) quiver Q�H� (see 2.4 below) of a self-dual, coradically graded, pointed
Hopf algebra H . It can be characterized as the Hopf quiver of a finite abelian
group with a finite ramification, or equivalently, the quiver of a (finite dimensional)
self-dual Hopf bimodule of a finite abelian group (see 2.2 below). We also prove
that a finite dimensional pointed Hopf algebra H , with grH , the graded version of
H (see 2.4 below), being self-dual, is generated by group-like and skew-primitive
elements. This partially justifies a conjecture of Andruskiewitsch and Schneider
(2000, Conjecture 1.4).

For simplicity of exposition, we assume throughout that k is an algebraically
closed field of characteristic zero. All algebras and coalgebras are over k� For a finite
dimensional vector space V� we denote its k-linear dual by V ∗. Unendowed tensor
product ⊗ is ⊗k.

2. HOPF QUIVERS AND DUAL GABRIEL’S THEOREM

We begin by recalling general facts, due to Cibils and Rosso (2002) and van
Oystaeyen and Zhang (2004), about constructing graded Hopf structures from path
coalgebras and the dual Gabriel’s theorem for pointed Hopf algebras.

2.1.

Let Q be a quiver and kQ the k-space with all the paths of Q as a basis. Then
kQ has a natural length gradation kQ = ⊕

n≥0 kQn� where kQn is spanned by all the
paths of length n� Note that Q0 is the set of vertices and Q1 is the set of arrows. For
each nontrivial path p = an · · · a2a1 ∈ Qn (i.e., n ≥ 1) we define its starting vertex
s�p� as the tail of arrow a1 and terminating vertex t�p� as the head of arrow an�

Given a quiver Q� the graded space kQ has a natural graded path coalgebra
structure as follows:

��g� = g ⊗ g� ��g� = 1 for each g ∈ Q0�

��p� = t�p�⊗ p+ an ⊗ an−1 · · · a1 + · · · + an · · · a2 ⊗ a1 + p⊗ s�p�� ��p� = 0

for each nontrivial path p = an · · · a1�

It is obvious that kQ is pointed with set of group-like elements G�kQ� = Q0� and
has the following coradical filtration

kQ0 ⊆ kQ0 ⊕ kQ1 ⊆ kQ0 ⊕ kQ1 ⊕ kQ2 ⊆ · · · �



SELF-DUAL HOPF QUIVERS 4507

Hence kQ is coradically graded. We remark that the path coalgebra kQ has another
presentation as the so-called cotensor coalgebra and hence enjoys a universal
property (see Nichols, 1978; van Oystaeyen and Zhang, 2004).

2.2.

Let G be a group and � the set of its conjugacy classes. A ramification datum
R of the group G is a class function

∑
C∈� RCC with coefficients in �0 ∪ �
�, where

�0 is the set of non-negative integers. A ramification R of G is said to be finite,
provided that all the RC’s are finite. Recall that for each ramification datum R of G,
the corresponding Hopf quiver Q = Q�G�R� is defined as follows: The set of vertices
Q0 is G� and for each x ∈ G and c ∈ C� there are RC arrows from x to cx�

A vector space M is said to be a kG-Hopf bimodule if it is simultaneously
a kG-bimodule and a kG-bicomodule such that the comodule structure maps are
homomorphisms of kG-bimodules.

Hopf bimodules over kG were classified in Cibils and Rosso (1997,
Proposition 3.3). We briefly recall this result for later application. For each C ∈ �,
fix an element u�C� ∈ C� and let ZC be the centralizer of u�C�� There is an equi-
valence of categories

V 	 b�kG� −→ ∏

C∈�
mod�kZC��

where b�kG� is the category of kG-Hopf bimodules and mod�kZC� the category
of left kZC-modules. Given M ∈ b�kG�� then V�M� = �u�C�M1�C∈�� where the left
module structure on u�C�M1 is defined by the conjugate action: g ·m = g ·m · g−1.
On the contrary, for any �MC�C∈� ∈ 
C∈�mod�kZC�, the corresponding kG-Hopf
bimodule is

⊕
C∈� kG

⊗
kZC

MC ⊗ kG.
Given a kG-Hopf bimodule M with bicomodule maps �L and �R� we define

the quiver Q = Q�G�M� of M as follows: The set of vertices Q0 is G� and for any
g� h ∈ G� there are dimk

hMg arrows from g to h� Here by hMg we mean the �h� g�-
isotypic component

�m ∈ M � �L�m� = h⊗m� �R�m� = m⊗ g��

The following lemma shows that the Hopf quivers arising from ramification
data coincide with those quivers from Hopf bimodules over a group, hence we may
identify them by just saying Hopf quivers.

Lemma 2.1. For any quiver Q = Q�G�M�� there exists a ramification datum R of G
such that Q = Q�G�R�� and vice versa.

Proof. Let M be a kG-Hopf bimodule with comodule structure maps �L and �R
and Q = Q�G�M�� For any f� g� h ∈ G and m ∈ hMg� by the definition of kG-Hopf
bimodules, we have

�L�f ·m� = fh⊗ f ·m� �L�m · f� = hf ⊗m · f
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and

�R�f ·m� = f ·m⊗ fg� �R�m · f� = m · f ⊗ gf�

It follows that

f · hMg ⊆ fhMfg� hMg · f ⊆ hfMgf �

Note that f is invertible, hence actually we have

f · hMg = fhMfg� hMg · f = hfMgf �

It follows that for x� g� c ∈ G�

g−1cgxMx = g−1cgM1 · x = g−1 · cM1 · g · x�

Since the actions of group elements are invertible, it is clear that

dimk
g−1cgxMx = dimk

cM1�

In other words, for any x ∈ G and any c′ ∈ C� where C is the conjugacy class
containing c� there are dimk

cM1 arrows from x to c′x in Q. Let � be the set of the
conjugacy classes of G� For each C ∈ �� fix an element c ∈ C� Take a ramification
data of G as

R = ∑

C∈�
RCC

with RC = dimk
cM1� It is clear that Q = Q�G�R��

On the contrary, let Q = Q�G�R� for some R = ∑
C∈� RCC� Take �MC�C∈� ∈


C∈�mod�kZC� such that dimkMC = RC� This is always possible. For example, take
MC as trivial kZC-module. Let M be the associated kG-Hopf bimodule. By direct
calculation of the isotypic components of M� we have that Q = Q�G�M�� �

2.3.

Suppose that kQ can be endowed with a graded Hopf algebra structure with
length gradation. Then kQ is pointed and kQ0 is the coradical. Hence kQ0 � kG
for some finite group G and we now identify Q0 and G� The graded Hopf algebra
structure induces naturally on kQ1 a kG-Hopf bimodule structure and Q is of course
the Hopf quiver of it. By Lemma 2.1, the quiver Q is the Hopf quiver Q�G�R� of
some ramification data R�

Given a Hopf quiver Q = Q�G�R� for some group G and some ramification
data R� then kQ1 admits kQ0-Hopf bimodule structures. Fix a kQ0-Hopf bimodule
�kQ1�mL�mR� �L� �R�� By the universal property of kQ� the bimodule structure can
be extended to an associative multiplication and kQ becomes a graded bialgebra.
The existence of antipode is guaranteed by a result of Takeuchi (1971). Hence kQ
admits a graded Hopf structure.

Cibils and Rosso’s results (2002) can be summarized as follows.
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Theorem 2.2. Let Q be a quiver. Then Q is a Hopf quiver if and only if the path
coalgebra kQ admits graded Hopf algebra structures, if and only if Q0 is a group and
kQ1 admits a kQ0-Hopf bimodule structure.

2.4.

Let C be a pointed coalgebra with G = G�C�� then the corresponding quiver
Q�C� is obtained in the following way. The set of vertices of Q�C� is G� For
∀ x� y ∈ G� the number of arrows from x to y is dimk Px�y�C�− 1� where Px�y�C� =
�−1�C ⊗ x + y ⊗ C�� Chin and Montgomery’s (1997) theorem says that C is a
large subcoalgebra of the path coalgebra kQ�C�. Here “large” means that the
subcoalgebra contains all the vertices and arrows of Q�C�� Of course, in this
case such a quiver is unique, called the co-Gabriel quiver of C� We remark that,
according to the definition, a pointed coalgebra and its associated graded coalgebra
(induced by the coradical filtration) enjoy the same quiver.

Let H be a pointed Hopf algebra. The coradical filtration �Hn � n ≥ 0� is in fact
a Hopf algebra filtration and hence the associated graded space

grH = ⊕

n≥0

�grH�n = ⊕

n≥0

Hn/Hn−1

(with H−1 = 0) is a coradically graded Hopf algebra (see Montgomery, 1993, Lemma
5.2.8). Consider the quiver Q�H�� called the co-Gabriel quiver, of the underlying
coalgebra of H� The following result can be regarded as the version of the Gabriel’s
theorem for Hopf algebras from the coalgebra aspect, see van Oystaeyen and Zhang
(2004, Proposition 4.4 and Theorem 4.6).

Theorem 2.3. Suppose that H is a pointed Hopf algebra and that G = G�H�� Then
Q�H� is a Hopf quiver and there exists a graded Hopf algebra embedding grH ↪→
kQ�H�� where the Hopf structure on kQ�H� is determined by the kG-Hopf bimodule
structure on �grH�1�

3. SELF-DUAL HOPF QUIVERS

In this section, we consider the co-Gabriel quivers of self-dual coradically
graded pointed Hopf algebras, which are called self-dual Hopf quivers.

3.1.

Let H = ⊕
n≥0 H

n be a positively graded Hopf algebra. In this section, we
always assume that H is locally finite dimensional, namely, the homogeneous spaces
are finite dimensional. The Hopf algebra H is said to be self-dual if there exists a
graded Hopf isomorphism H � Hgr� where Hgr = ⊕

n≥0 H
n∗ is the graded dual of H�

A Hopf quiver Q is said to be self-dual if Q = Q�H� for some self-dual
coradically graded pointed Hopf algebra H�

For an explicit description of the self-dual Hopf quivers, we need the notion
of self-dual Hopf bimodules over a finite Abelian group algebra. Let G be a finite
Abelian group. A finite dimensional vector space M is said to be a self-dual kG-Hopf
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bimodule if it is a kG-Hopf bimodule and there is an isomorphism of kG-Hopf
bimodules M � M∗, where M∗’s kG-Hopf bimodule structure is induced by a Hopf
isomorphism kG � �kG�∗�

The main result of this section is the following theorem.

Theorem 3.1. The following are equivalent:

(1) Q is a self-dual Hopf quiver;
(2) Q is the Hopf quiver of a finite Abelian group with a finite ramification;
(3) Q = Q�G�M�, where G is a finite Abelian group, and M is a (finite dimensional)

self-dual kG-Hopf bimodule.

3.2.

The classification of finite dimensional self-dual Hopf bimodules over a finite
Abelian group algebra was given in Green and Marcos (2000) using Cibils and
Rosso’s results (1997). We recall it here for application later on.

Let G be a finite Abelian group. Write G = G1 ×G2 × · · · ×Gt� where
Gi = �
i�. The general elements of G are written as 
e = 


e1
1 · 
e22 · · · 
ett � Let � =

��1� �2� � � � � �t� be a set of roots of unity such that order�i = order 
i� We define a
map �� 	 kG −→ �kG�∗ as follows: for any element 
e ∈ G� let ���
e� = ��
e ∈ �kG�∗�
for any 
f ∈ G� let ��
e�


f � = �
e1f1
1 �

e2f2
2 · · ·�etft

t � It is well-known that such a map ��

is a Hopf isomorphism and that ���g �g∈G is a complete set of irreducible characters
of G� Denote by Sg the irreducible module associated to the character ��g �

By Cibils and Rosso’s (1997) classification of Hopf bimodules, there is an
equivalence of categories

V 	 b�kG� −→ ∏

g∈G
mod�kG��

where b�kG� is the category of kG-Hopf bimodules and mod�kG� the category
of left kG-modules. Given M ∈ b�kG�� then V�M� = �gM1�g∈G� Write gM1 =⊕

h∈G mh�g�Sh as the sum of irreducible modules. Then the isomorphic classes of
objects in b�kG� are in one-to-one correspondence with the set of matrices

��mh�g��g�h∈G �mh�g� is a nonnegative integer, ∀g� h ∈ G��

Identifying kG with �kG�∗ via ��� then M∗ is a kG-Hopf bimodule. By Cibils and
Rosso (1997, Proposition 5.1), if M corresponds to the matrix �mh�g��g�h∈G� then M∗

corresponds to the matrix �m∗
h�g��g�h∈G� where m∗

h�g� = mg−1�h−1��
Now it is clear that a kG-Hopf bimodule M is self-dual if and only if

there exists an � as in the previous argument such that the corresponding matrix
�mh�g��g�h∈G of M satisfying mh�g� = mg−1�h−1�� for any g� h ∈ G�

3.3.

Proof of Theorem 3.1. �1� ⇒ �2� Assume that Q = Q�H�� where H = ⊕
n≥0 H

n

is a self-dual coradically graded pointed Hopf algebras. By the assumption, H0 = kG
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for some finite group and H1 is a kG-Hopf bimodule. In fact, Q�H� = Q�G�H1�� By
Lemma 2.1, it is enough to show that G is Abelian. Since H is self-dual, hence there
exists a grade Hopf isomorphism f 	 H −→ Hgr� Consider the restriction f0 of f to
degree zero. Clearly, f0 gives a Hopf isomorphism between kG and �kG�∗. It follows
that G is Abelian since �kG�∗ is commutative.

�2� ⇒ �3� Assume that Q = Q�G�R�� where G is a finite Abelian group and
R = ∑

g∈G Rgg a finite ramification datum. Then by Lemma 2.1, Q = Q�G�M� for
any Hopf bimodule M such that dimk

gM1 = Rg� ∀g ∈ G� It suffices to prove that
there exists a self-dual Hopf bimodule satisfying such condition. For this, we fix an
� as in Subsection 3.2. Let M be the kG-Hopf bimodule corresponding to matrix
�mh�g��g�h∈G with entries mg−1�g� = Rg� ∀g ∈ G and zero otherwise. It is clear that
such an M is self-dual, by the argument of Subsection 3.2.

�3� ⇒ �1� Assume that Q = Q�G�M�� where G is a finite Abelian group,
and M is a self-dual kG-Hopf bimodule. Now kQ has a coradically graded Hopf
structure determined by the self-dual kG-Hopf bimodule M� Let H be the Hopf
subalgebra of kQ generated by Q0 and Q1� By Montgomery (1993, Theorem 2.2),
H is self-dual. It is clear that H is coradically graded pointed and H0 = kG and
H1 = M� Hence by Subsection 2.4, Q = Q�H�� That is, Q is the co-Gabriel quiver
of the self-dual coradically graded pointed Hopf algebra H� and hence a self-dual
Hopf quiver. �

4. POINTED HOPF ALGEBRA H WITH gr H BEING FINITE
DIMENSIONAL SELF-DUAL

The main purpose of this section is to prove that a finite dimensional pointed
Hopf algebra H is generated by its group-like and skew-primitive elements if its
graded version grH is self-dual.

4.1.

Andruskiewitsch and Schneider (1998) proposed the so-called lifting method
for classifying finite dimensional pointed Hopf algebras. In the program, a key step
is to find the (nice) generators. Andruskiewitsch and Schneider conjectured that
all finite dimensional pointed Hopf algebras over an algebraically closed field of
characteristic zero are generated by group-like and skew-primitive elements (see
Andruskiewitsch and Schneider, 2000, Conjecture 1.4).

The following theorem shows that Andruskiewitsch and Schneider’s
conjecture is true for finite dimensional pointed Hopf algebras with self-dual graded
versions.

Theorem 4.1. Let H be a finite dimensional pointed Hopf algebra. If grH is self-dual,
then H is generated by group-like and skew-primitive elements.

Proof. Let �Hn� be the coradical filtration of H� Its graded version

grH = ⊕

n≥0

�grH�n = ⊕

n≥0

Hn/Hn−1
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(with H−1 = 0) is a coradically graded Hopf algebra. By the assumption of grH
being self-dual, it follows by Theorem 3.1 that �grH�0 = kG for some finite Abelian
group G� Let J = ⊕

n≥1�grH�n� It is clear that J is a nilpotent (Hopf) ideal of
grH� Note that grH/J = �grH�0 = kG� which is isomorphic to k�G� as an associative
algebra. It follows that grH is an elementary algebra and J is the Jacobson radical.
It is clear that J 2 ⊆ ⊕

n≥2�grH�n� and hence �grH�1 ⊆ J/J 2�
On the other hand, by the duality of coradical filtration and Jacobson

radical series (see e.g., Montgomery, 1993, 5.2.9), we have J 2 = C1��grH�∗�⊥� where
C1��grH�

∗� is the first term of the coradical filtration of the dual Hopf algebra
�grH�∗� By the self-duality of grH� C1��grH�

∗� = C1�grH� = �grH�0 ⊕ �grH�1 since
grH is coradically graded. This implies that dimk J

2 = dimk grH − dimk�grH�0 −
dimk�grH�

1�
By comparing the dimensions, we have J 2 = ⊕

n≥2�grH�n� and hence �grH�1 =
J/J 2� It is well known that (see e.g., Auslander et al., 1995, Theorem 1.9, p. 65),
as an associative algebra, grH is generated by grH/J and J/J 2� This deduces that
H is generated by H1� by applying Lemma 2.2 of Andruskiewitsch and Schneider
(1998). Now the theorem follows by Taft-Wilson Theorem (see e.g., Montgomery,
1993, Theorem 5.4.1, p. 68). �

Remark 4.2. Let H = ⊕
n≥0 H

n be a finite dimensional self-dual coradically graded
pointed Hopf algebra. By J we denote its Jacobson radical. Then by a similar
argument of comparing dimensions, via the duality of coradical filtration and
Jacobson radical series, we have Jm = ⊕

n≥m Hn� for any integer m ≥ 1�

4.2.

Let Q = Q�G�M� be a Hopf quiver and kQ the graded Hopf algebra
determined by the kG-Hopf bimodule M� By kG�M� we denote the Hopf subalgebra
of kQ generated by Q0 and Q1� This is actually the so-called bialgebra of type one,
in the sense of Nichols (1978).

An immediate consequence of Theorem 4.1 says that any finite dimensional
self-dual coradically graded pointed Hopf algebra is a bialgebra of type one.

Corollary 4.3. Any finite dimensional self-dual coradically graded pointed Hopf
algebra is of the form kG�M� for some finite Abelian group G and some self-dual kG-
Hopf bimodule M�

4.3.

Finally, we remark that there is not known necessary and sufficient condition
for general self-dual kG-Hopf bimodule M such that kG�M� is finite dimensional.
However we work out the simplest case with a help of results in Chen et al. (2004).

Let G be a cyclic group of order n generated by g� Let R = g be the simplest
ramification datum. Then the Hopf quiver Q = Q�G�R� is a basic cycle. Namely,
Q has set of vertices �gi�i = 0� 1� � � � � n− 1� and set of arrows �ai 	 g

i −→ gi+1 � i =
0� 1� � � � � n− 1�� Finite dimensional pointed Hopf algebras with co-Gabriel quiver
Q are completely classified in Chen et al. (2004, Theorem 3.6). As a consequence
we have
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Proposition 4.4. Let H be a finite dimensional pointed Hopf algebra with Q�H� being
a basic cycle. Then H is self-dual if and only if H is the Taft algebra.

Proof. Recall that the Taft algebra T of dimension n2 is generated by two elements
h and x with relations

xn = 0� hn = 1� xh = qxh�

where q is an nth primitive root of unity. The self-duality of T was given in Cibils
(1993).

Now let H be a finite dimensional pointed Hopf algebra such that its quiver
Q�H� is the basic cycle Q� Then by a dual version of Lemma 2.1 in Huang et al.
(2004), the Hopf algebra H is monomial (see Chen et al., 2004, Definition 1.2). Since
finite dimensional Hopf algebras are co-Frobenius, hence by Lemma 2.3 in Chen
et al. (2004), H � Cd�n� as coalgebra. Now by Theorem 3.6 in Chen et al. (2004),
H is isomorphic to a Hopf algebra of form A�n� d� �� q�� which is presented by
generators and relations as follows

hn = 1� xd = ��1− hd�� xg = ugx�

with u a root of unity of order d and � = 0 or 1� By Chen et al. (2004), Theorem
4.3, if A�n� d� �� q� is self-dual, then � = 0� and d = n� That is, A�n� d� �� q� must be
exactly the Taft algebra. �
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